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Type la Supernovae

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

5

: Spectral Classification :
:  “I”—weak hydrogen :
“a” — strong silicon :
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Type la Supernovae (SNe la)

Thermonuclear explosions of C/O
white dwarfs — objects about 35%
more massive than the Sun,
crammed Iinto a sphere the size of
the Earth.

p.~2x10°gcm?



SNe |la
Outshine entire galaxy for months

L SN1994D



SNe la — Lightcurve

SN2011fe

Several different bands

[Munari+ (2013)]

Brightness

) . 9 months

0 Time

Powered by radioactive decay of
heavy isotopes (*°*Ni - *°Co - °°Fe)



Why It Matters



Why it Matters in General

Stars convert H/He into heavier
elements up to Fe.

Supernovae, In general, release this
material to the rest of the galaxy.

“We are all starstuff.” — Carl Sagan



Why it Matters in Particular

The supernova process Itself
produces even heavier elements.

SNe la produce alot (~0.5M ) of

sun

“Iron-group elements” — Fe, Co, NI —
and to a lesser extent, “intermediate-
mass elements” — Si, S, Ca



Why it Matters in Cosmology

“Broader Is brighter”

— Phillips' Relation

“Standardization”
allows for distance

measure

2011 Nobel Prize in Physics
Perlmutter, Schmidt, and Riess

“for the discovery of the
accelerating expansion of the
Universe through observations
of distant supernovae.”
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Brightness
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Brightness

Several SNe la
lightcurves

Time

[Kim+ (1997)]

“Standardized”
SNe la
lightcurves




Key Challenges



Single Degenerate Model

hotosphere
ignition runaway structured 1 _1 Eecedeg
'2C burning ejecta v~ 10"km s
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Key Challenges

Linking together different phases
of the evolution Iinvolves coupling
different physics and, sometimes,
different algorithms/solvers.



Key Challenges

The simmering phase Is quite
SUbSOﬂlC (M~005) » Map between “Low Mach”

code (Maestro) and
compressible code (Castro)

The flame prop*agation (TNR) Is
mildly subsonic (M~0.2).

Runaway ignition occurs once, In

a Sma” reglOn (r < 2 km) } High resolution

At ignition, the flame is M ot for the
iIncredibly thin (I <1 mm).

HEE



Why Blue Waters?



Why Blue Waters?

Simulating a full star (r ~ 10° km)
while resolving the initial ignition
point (r ~ 2 km) requires a lot of

CPUs, even with AMR. %@f
d . O@/)/&
BW-Scale ( O/)%
machine . &
— Q.Q e 20

.I.' e
~V“
Initially 5 levels of AMR — effective resolution 36,8642 (135 m/zone)

Typical run — 4096 MPI tasks, 16 OMP threads/task, 2 MPI tasks per node:
65,536 core modules




Why Blue Waters?

Such high resolution implies
large checkpoint (~200 GB) and
viz (~ 100 GB) files.

Dumped every couple of hours, we
generated several 10's of TB of
data (spread over multiple
machines). By far, I/0O on BW was

superb.
*Globus Online



Accomplishments



Accomplishments

First simulation to include a realistic
convective flow field...but it has little
effect for typical (40 km off-center)

Ignition locations.
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[Nonaka+ (2012)] _
Typical convective pattern



Accomplishments

However, if one artificially moves
the ignition closer to the center
(10 km) . t=0.1s t=0.2s t=0.3s

Without a

convective
field

With a
convective
field




Accomplishments

The flame goes
through several
distinct phases of «
evolution.
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Flame surface —
laminar burning
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Accomplishments

The flame goes
through several
distinct phases of
evolution.

— AV

— A0

— 1d model AV

- - 1d model AV, 38=0.75

1d model AV, 3=1.2

Can be characterized
by solid angle of
buoyant flame




Implications



Implications of our Calculations

* EXplosions are asymmetric

» Relatively little mass burned via
flame

e Yields faint transient events

* Subseqguent transition to
detonation would produce
extremely bright event
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